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Abstract

Three Zn-doped InSb crystals were directionally solidified under microgravity conditions at

the International Space Station (ISS) Alpha. The distribution of the Zn was measured using

SIMS. A short diffusion-controlled transient, typical for systems with k>1 was demonstrated.

Static pressure of — 4000 N/m 2 was imposed on the melt, to prevent bubble formation and

dewetting. Still, partial de-wetting has occurred in one experiment, and apparently has disturbed

the diffusive transport of Zn in the melt.
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Introduction

The diffusion-controlled segregation in microgravity[1] can be disturbed by the residual

micro acceleration [2], or bubbles [3, 4]. Free surfaces and bubbles create a major disruption in

fluid properties (e.g. density, conductivity) and boundary conditions. In such cases, the no-slip

condition (i.e. zero melt velocity) at the container walls is suddenly replaced by a free surface

which can move when exposed to surface tension gradients or residual micro-acceleration.

Models of thermocapillary convection driven by voids during directional solidification [5] show

that, in microgravity, void-generated theirnocapillary convection is dominating the axial and

radial segregation.

During crystal growth without melt convection, the impurities are transported by

diffusion. Assuming uniform initial dopant concentration Co in the melt, and constant growth

rate R[cm/s], the distribution of the dopant in the crystal Cs(x) can be calculated from the exact

analytical solution derived by Smith et al. in 1955 [6],
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where the dimensionless concentration CS (,-, k) / Co is a function of the equilibrium segregation

coefficient k and the dimensionless distance ,r ,
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where L[cm] is the characteristic length, R[cm/s] is the growth rate, D[cm2/s] is the diffusion

coefficient of the dopant and x[cm] is axial distance from the seed.

The crystal growth experiments conducted under microgravity conditions in the past 40

years reveal that the value of the equilibrium segregation coefficient k has a profound effect on

the segregation behavior in microgravity. The first growth of InSb in microgravity was carried

out by Witt et al. [ 1 ] in 1975. The experiments included growth of undoped, Te-doped (k=0.5)

and Sn-doped InSb (k=0.057). Zemskov et al. [7-9] grew Te- doped and Zn-doped InSb. The

segregation profiles of Zn-doped InSb were not reported.

In 1987 Duffar et al. [5] investigated the growth of Sn-doped InSb, using a calorimetric

method proposed by the authors. The segregation was considerably disturbed by a bubble which

apparently caused Marangoni convection in the melt. Note again that Sn has a low segregation

coefficient, k=0.057, so that diffusion controlled steady state segregation requires an extensive

solute build up at the interface, up to 1/0.057 =17.5 Co.

Segregation of systems with k>1 was rarely studied in microgravity. Gillies et al. [10]

investigated growth of HgTe-CdTe having k=3.9. To avoid interface breakdown due to

constitutional supercooling, the growth rate was 0.2 lan / s (0.72 mm/hr). Although the level of

the residual acceleration was less than 10 -6 go , large axial and radial variations of the

composition were observed and attributed to convection driven by the residual micro

acceleration. A relatively short initial transient was obtained, considering the low growth rate.

In 2002, seven InSb crystals were grown at the International Space Station (ISS), as a

part of the SUBSA (Solidification Using a Baffle in Sealed Ampoules) investigation [11,12].
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Indium Antimonide was chosen because of its low melting point (525 °C), which made the

experiments suitable for the Microgravity Science Glovebox (MSG) facility at the ISS. The four

Te-doped InSb crystals had a nearly identical diffusion controlled initial transient [ 10]. The

equilibrium segregation coefficient of Te in InSb is k=0.5. Since (2k-1) =0, equation (1) is

reduced to [11],

CS (;r) = I (I, "f	 }

O	
l

	
(2)

Fig. 1 shows Eq. (1) plotted as a function of X and k. Taking Cs (x) / Co = O(X) = 0.95 as the

end of the transient, one gets the corresponding dimensionless length X =1.45 which was in

agreement with the experimental results (for Te-doped InSb).

Here we present the results obtained with the three Zn-doped InSb crystals and labeled

SUB SA 08, 09 and 10.

Length of the Initial Transient for systems with k>I

Zinc was selected as dopant, because its equilibrium segregation coefficient is larger than one

(k=2.9) . Equation (1) can be written as,

Cs(x) (x) +F(k,x)
Co
	 (3)

where,

O(X)= 2 ( l +eif^)

and

F(k„X)=Ck-1) e-4k(1-k)xerfe[(2k-1)j--].
2

As noted earlier, for k=0.5, F (k, = 0. Given the precision of the resolution of the data

available, Cs Q) / Co = 0(x) = 0.95 giving X & 1.45 as the dimensionless length of the initial

transient. For k # 0.5 , one can identify the following two regions:

i. 0 < k < 0.5, F(k,x) is negative, prolonging the transient.

ii. 0.5 <k< 00 , F(k Z) is positive, shortening the transients.
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Therefore, all systems with k>0.5, have a shorter diffusion controlled transient than that given by

Eq. (2). For large z, the asymptotic expansion of the complementary error function is [ 13]

er fc (z) = e 
z2 

1 — 1 + 1 — ..	
e Z2

(z 21z 3 31z 5 	111-7-z

Using z = (2k —1)jX ,

	

e- (2k-i)2x	 1
eife [(2k —1)^X

(2k-1)^X

Eq. (1) is reduced to [14],

CS 	 = 1 1+eif + 
ex

(4)
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Eq. (4) is valid for large (2k- 1)^z. One can see from Fig. 1 that, for k=2.9 and Z > 1, Eq.(1)

and Eq.(4) yield a nearly identical result (i.e. Eq. (4) should be used for (2k —1)j > 5 ).

For 2.9 < k < oo, the location x -- 0.7 gives CS (x) / Co = 0.95 , which can be taken as

the end of the initial transient and beginning of the uniform steady state segregation. Based on

the above analysis, Zn-doped InSb is a suitable dopant for diffusion-controlled growth in

microgravity, expected to yield a short initial transient followed by steady state.

Experimental Procedure

The special fiirnace with a transparent gradient section and a video camera were located

in the Microgravity Science Glovebox of the ISS [11,12]. This setup provided aside view to the

SUBSA ampoule made out of fiised silica (Fig. 2 a). Hence we were able to observe one side of

the seed and the charge and make temperature adjustments during the seeding process, as

needed. In the SUBSA 08 and SUBSA 09 experiments, 2 mm ± 0.1 mm of undoped seed was

melted as planned.

The crystals were grown by lowering the furnace temperature. During SUBSA 08 and

SUBSA 09, the cooling rate was 45 °C/hr, corresponding to a growth rate of 5 mm/hr (1.389

Inr /s). However, in the SUBSA 10 experiment, due a software problem, the cooling rate was 30

°C/hr corresponding to a growth rate of 3.334 mm/hr (0.9259 ,uin /s). Furthermore, the
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temperature could not be sufficiently increased, so that only — 0.1 min the seed was melted.

To prevent dewetting, the melt was pressurized using a carbon piston driven by a carbon

spring (Fig. 2b), providing —30 minHg (-4000 N/m 2) of static pressure in the melt. All carbon

parts including springs were produced by the Energy Science Laboratories, Inc. To reduce

friction between the moving parts, the graphite was polished and CVD coated with a 2 ,um thick

layer of hard pyrocarbon, Fig. 2c). In SUBSA 08 and 09, a carbon baffle was used [ 12] to

minimize the possible effects of residual micro-acceleration. The undoped seed crystals were

prepared by W.A. Bonner of Cristallod Inc. using the vertical Bridgman process [11]. The doped

charge was prepared by directional solidification in a multizone Mellen furnace at Rensselaer

Polytechnic Institute, using 6N In, Sb and Zn.

Results

The SUBSA ampoules, containing the crystals grown in space, were cut open using a

diamond saw. In all SUBSA ampoules, the save dust (silica particles) was pulled into the

ampoules, demonstrating that vacuum in the ampoules was not compromised during processing

in microgravity or afterwards. All crystals slid out from the quartz ampoules under slight

tapping, there was no need to section or etch the ampoules. All graphite parts, including the

carbon springs, were shiny and did not exhibit any signs of surface contamination, e.g. due to

vapor condensation. Although InSb expands by about 12 % upon freezing, we did not observe

any mechanical damage in the ampoule components.

In SUBSA 10, about 10 % of the seed cross section was attached to the charge,

demonstrating that seeding did occur. Approximately 100 ,um of the seed were melted.

To measure the axial distribution of Zn, 1 mm thick plates were cut from the central

section of the crystals (Fig. 3 b) using a diamond impregnated wire saw (South Bay Technology,

Model 850), and polished using subsequently 1,200 grit paper, 10 pin diamond particles and 1

lim silica particles. At Charles Evans & Associates, Sunnyvale, CA, SIMS measurements were

conducted along the centerline of these plates.

The distribution of Zn is shown in Figs. 4 to 6. SUBSA 08, 09 and 10 were each doped

with 0.0009± 0.00005 g of Zn. For SUBSA 10, the initial Zn concentration, determined from the

weight of Zn added to the melt, was Co = 2.1 . 10 18 cm -'. Two sets of SIMS data were taken,

-5-



because the fist set of data (SIMS_1 in Fig. 4) had 21 out of 24 points above C o = 2.1.1018cm-3.

However, the second set of SIMS data (SIMS_2, Fig.4) taken on the next day, gave consistent

values of Zn distribution. The average Zn concentration in the crystal can be calculated from the

SIMS data as,

1L	 11
Cosrnrs — L ^C(x)dx ^	 z (c. +CE+i)(xa+1 — x.)	 (5)

o=i
where n is the total number of SIMS measurements, C i and x i are the SIMS concentration and the

location of each data point, and L is the length of the crystal. Using Eq. (5), one gets

C o, SIMS = 3.5 x10" cm-'. The discrepancy between C o. SIMS = -5 x10' $ cm-'and

Co = 2.1 . 1018 cm-3 is attributed to the lack of calibration standards at the time of the SIMS

measurements.

Based on the Eq. (5) and the SIMS data, the first to freeze section of the crystal should

have Cs (0) =kCa SIMS =10.7 . 1018 em_3 . The highest measured dopant concentration, 0.45 mm

from the undoped seed is C (0.45 mm) = 7.71 . 10 18 cm' . Considering the high concentration

gradient and the size of the SIMS spot (400 ,um x 400 Aim), the measured concentration appears

reasonable.

The total length of the SUBSA 10 crystal without the seed is 36.02 mm. In SUBSA 10,

after ` 1 cm long initial transient (corresponding to ;v ;z^ 0.7 ), the distribution of Zn reached a

steady state concentration. By assuming that the steady state concentration is equal to

Co, SIMS = 3.5 x10 1 " cm-' and by fitting the Eq. (1) to the data, one gets the value of the diffusion

coefficient of Zn in InSb, D =1.2 x 10 -4 cm 2/S (see frill line in Fig. 4).

For SUBSA 08 and 09, during seeding, 2 mm of the undoped seed were melted, reducing

the Zn concentration in the melt close to the seed (Fig. 5 and 6 respectively). Furthermore, the

baffle, did not frilly withdraw into its initial position (i.e. did not translate as planed, see Fig. 7).

Therefore, the profiles obtained in SUBSA 08 and 09 experiments are difficult to interpret. Still,

one can appreciate that during the first several millimeters of growth, the concentration does not

exhibit a sharp initial transient, and that the initial concentration in the solid is close or below the
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average concentration, although k=2.9. This lack of the initial transient could be of interest in

some practical applications where initial transient is undesirable.

Six of the seven InSb space-grown crystals (four Te-doped [11] and SUBSA 08 and

SUBSA 09) show an intimate contact with the crucible wall, attributed to the action of the

carbon spring, pushing the melt towards the crucible, and thus preventing dewetting. However,

the external surface of the SUBSA 10 crystal clearly shows evidence of partial dewetting. The

the first —15 mm of the crystal (close to the seed, see Fig. 3) has a smooth shiny surface typical

of crystals grown in an intimate contact with the silica wall. Yet, after approximately 20 mm of

growth (see Fig. 8 a), the shiny regions typical of good melt-crucible contact, alternate with areas

with ridges and valleys, typical of partial dewetting. In the last to freeze section of the crystal,

strong surface striations can be seen (Fig. 8b) that can be related to dewetting with a

discontinuous movement of the melt-crucible contact-line, as explained by Schweizer [15].

Figure 8 c) shows a particularly rough section, typical of full de-wetting, similar to the

morphology reported by Witt et al. [1] .

According to the theory of dewetting [ 16], a meniscus exists between the crucible wall

and the solid-liquid interface. For — 4000 N/m 2 exerted by the carbon spring, the Young-Laplace

Equation gives a radius of curvature for the meniscus of r— 300 µm. With such a small

meniscus radius, only a very high contact angle between InSb melt and the silica ampoule (a few

degrees below 180°), could have enabled dewetting to occur. Since a contact angle of close to

180° has never been reported for InSb and silica, it is likely that the carbon spring and piston

did not work properly towards the end of growth, yielding pressure significantly lower than

4000 N/m2.

Dewetting should cause convective interference with segregation driven by gradients in

surface tension. Therefore, the diffusion controlled initial transient in the first 15 mm of growth,

is consistent with the shiny crystal surface, typical of the intimate contact between the melt and

the crucible, providing zero-velocity at the wall (i.e. no-slip boundary condition). Furthermore,

the deviation form diffusion controlled steady-state segregation ofZn (Fig.4) after approximately

22 mm of growth, is consistent with thermocapillary convection due to the free liquid meniscus

associated with the partial dewetting documented in Fig. 3 c) and Fig. 8. A simple order of

magnitude analysis [17] gives the velocity of the melt due to thermocapillary convection:
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where u is the melt velocity [cm/s], p =6.48 [ g/cm3] is melt density and v =0.0033 [cm 2/s] is

melt kinematic viscosity [5, 18]. Based on [5], the gradient in surface tension caused by

temperature is d6 / dT — 0.08 [g/s 2-K], [5]. The temperature gradient along the meniscus is

estimated to be, dT/dz is — 50 [K/cm]. Assuming the meniscus length scale to be H-0.01 cm.

Eq. (6) gives the melt velocity at the meniscus surface of — 2.3 cm/s, which could have a

significant impact on the diffusive transport. Yet, it is not clear that the flow driven by the

surface tension gradient, along a — 100 pm meniscus, could develop significant convection in

the bulk melt, to disturb the segregation process (even though the meniscus is located next to the

solid-liquid interface).

Conclusions

Three Zn-doped InSb crystals (k=2.9) have been grown under microgravity conditions

within the SUBSA investigation conducted at the International Space Station. To prevent bubble

formation and dewetting a static pressure of , 4000 N/m 2 was imposed on the melt, using a

piston driven by a carbon spring. In two experiments (SUBSA 08 and SUBSA 09) a carbon

baffle was used [12] to minimize the possible effects of the residual micro-acceleration. Both

experiments show absence of the initial transient, which is difficult to interpret, but could be

useful for certain applications. The third crystal (SUBSA 10), grown without the baffle, shows a

good agreement with the Smith et al. equation [6], predicting a particularly short diffusion-

controlled initial transient, typical for systems with k>l, which, to our knowledge has not been

experimentally demonstrated so far. Furthermore, the appearance of partial deweting after about

20 mm of growth coincides with the departure from steady-state diffusion controlled segregation

towards the end of growth. An order of magnitude analysis shows that the thennocapillary

convection on the meniscus surface leads to the melt velocity of — 2 cm/s. The partial deweting

in SUBSA 10 is attributed to a mechanical problem, which may have prevented the carbon

spring from applying sufficient static pressure on the melt.
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Figure Captions

Fig. 1 Initial transient in dopant concentration, CS ( X, k) / Co , as a function of dimensionless

distance and of the equilibrium segregation coefficient, calculated using: Eq. (1) (dashed
lines with symbols, for k=0.1, 0. 3, 0.5, 1.5 and 2.9) and Eq. (6), (full line).

Fig. 2 a) Transparent SUBSA ampoule made out of fused silica; b) 9 mm diameter graphite
spring use to push the piston, to apply static pressure to the melt. c) piston and baffle,
polished and CVD coated with a 2 ,nn thick layer of hard pyrocarbon,

Fig. 3 a) and c) the "D" shaped sections and b) 1 mm thick plate cut from the central section of
SUBSA 10. The "D" shaped sections in c) shows surface morphology typical of
dewetting.

Fig. 4 Dopant segregation in SUBSA 10 crystal grown at 6.67 mrn/hr without a baffle. The
mass of the InSb charge and Zn dopant are 22.974 g and 0.0009 g respectively, giving Co
= 2.083 x 10 18 cm-3 Less than 0.1 mm of the seed was melted. The circles and squares
are two sets of SIMS data obtained without a calibration standard. Equation (1) fitted to
the data, gives D= 1.2 x 10-4 cm2/s .

Fig.5 Dopant segregation in SUBSA 09 crystal grown at 5 mm/hr without a baffle. 2 mm of
the seed was melted. The mass of the Zn is 0.0009 g giving Co = 2.02 x10 18 cm-3 The
squares are SIMS data.

Fig.6 Dopant segregation in SUBSA 08 crystal grown at 5 mm/hr without a baffle. 2 mm of
the seed was melted. The mass of the Zn is 0.0009 g giving Co = 2.02 x10 18 cm-3 The
squares are SIMS data.

Fig. 7 Computed tomagraphy scans of Zn-doped crystals: top SUBSA 10, middle SUBSA 08,
Bottom SUBSA 09. The baffle in SUBSA 08 is 1 mm short of its initial position. The
baffle in SUBSA 09 is about 2 cm from the seed.

Fig.8	 Pictures of the SUBSA 10 external surface showing (a) partial dewetting; (b) surface
striations that can be related to dewetting with a discontinuous movement of the melt-
crucible contact-line; c) full dewetting.
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